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Abstract

How are eyes and head adapted to meet the demands of visual exploration in different tasks

and environments? In two studies, we measured the horizontal movements of the eyes

(using mobile eye tracking in Studies 1 and 2) and the head (using inertial sensors in Study

2) while participants completed a walking task and a search and retrieval task in a large, out-

door environment. We found that the spread of visual exploration was greater while search-

ing compared with walking, and this was primarily driven by increased movement of the

head as opposed to the eyes. The contributions of the head to gaze shifts of different eccen-

tricities was greater when searching compared to when walking. Findings are discussed

with respect to understanding visual exploration as a motor action with multiple degrees of

freedom.

Introduction

Visual exploration refers to the active process of looking around in the environment. Observ-

ers survey the environment by shifting their gaze from one location to another (“scanning”) to

gather visual information that supports ongoing activities [1–3]. The predominant paradigm

for measuring visual exploration is recording eye movements in observers who look at screens.

Although screen-based approaches yield valuable insights about how the eyes scan different

types of photographs and videos, they are ill-suited for understanding visual exploration in

the context of locomotion because observers must remain stationary. In contrast, mobile eye

tracking studies have uncovered how gaze is adapted to different motor tasks, such as walking

indoors to search an office mail room [4] or hallway [5, 6], walking outdoors over flat or

uneven terrain [7–10], or even participating in an outdoor geological field expedition [11].

Yet, mobile eye tracking studies, which can measure only the position of the eyes relative to

the head, miss a well-appreciated but rarely studied aspect of visual exploration. In everyday

life we coordinate the rotations of the body, head, and eyes to scan in all directions [1, 12, 13].

Gaze—where we look in the world—is the culmination of how we rotate the eyes in relation

to the head, how we rotate the head in relation to the body, and how we orient the body in

space. Combining mobile eye tracking with head tracking from wearable inertial sensors [9,
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10, 14, 15] facilitates measuring how gaze depends on nested systems—rotations of the eyes

within the head are added to rotations of the head within the body. With multiple degrees of

freedom to control (i.e., the eyes, head, and body), how do observers coordinate visual explora-

tion? As we will review in the next section, the eyes and head are subject to different bio-

mechanical constraints and have different energetic costs that shape how they are used. In

spite of these constraints, the few existing studies to simultaneously measure eye and head

movements suggest that there is considerable flexibility in how observers explore within a task

[9, 16, 17]. The primary aim of the current study is to ask how exploratory eye and head move-

ments are differentially adapted to varying demands on attention created by different tasks/

environments in the context of ongoing locomotion.

The roles of eye and head in visual exploration

The biomechanics of eye and head movements constrain how they can be coordinated to visu-

ally explore. The oculomotor range of the eyes is ±55º along the horizontal axis [18], meaning

that shifts of gaze beyond this range require the head to rotate in the same direction as the

eyes. Horizontal rotations of the head in combination with eye rotations allow total gaze shifts

larger than 160º. Even larger gaze shifts require the trunk to rotate and/or the feet to reorient

the body in space [12, 19]. With eyes, head, and body all able to contribute to a single gaze

shift, there are multiple degrees of freedom to control. For example, a 20º-amplitude gaze shift

can be accomplished in many ways, even when just considering the roles of eyes and head: A

20º eye movement alone with no head movement, a 10º eye movement with a 10º head move-

ment, or a 5º eye movement with a 15º head movement all produce the same gaze result. How,

then, does the visual-motor system determine how much the eyes versus head should contrib-

ute to a gaze shift?

Laboratory studies that elicit gaze shifts to targets at different amplitudes show that the eyes

alone contribute to smaller-amplitude gaze shifts (less than 20º-30º), but for larger amplitude

gaze shifts the head increasingly plays a role [18, 20]. It is important to note that the head con-

tributes to gaze shifts smaller than 55º—the limit of the eyes alone—meaning that the head is

recruited even when it is not biomechanically required. This allows the eyes to stay within a

more comfortable range of ±25º [21]. Although eye and head contributions appear stereotyped

in laboratory tasks that simply ask participants to move the eyes to fixate a target, experimental

manipulations show that they are flexibly controlled. When instructed to make two sequential

gaze shifts, the head contributes more to the initial gaze shift if the second gaze shift will be in

the same direction [22]. In other words, observers are more willing to rotate the head when the

head will stay rotated for a while. This speaks to the different costs of eye versus head move-

ments. The eyes can move quickly with little effort, whereas the head moves more slowly and

requires more energy [12, 17].

The contributions of eyes and head are even more variable when measured during complex

tasks. Instead of asking participants to simply fixate targets, Pelz and colleagues [16] instructed

participants to copy a model, placed to the side of the participant, by arranging blocks on a

workspace in front of the body. Participants turned their eyes and head to shift gaze between

the model and workspace while completing the task. Unlike more controlled studies, the head

contributed between 1º-10º for smaller gaze shifts (less than 15º amplitude). Most likely, par-

ticipants adapted eye and head rotations from moment to moment depending on the demands

of looking to the model versus workspace (and scanning back and forth between the two loca-

tions). Participants’ willingness to visually explore with eyes versus head may reflect the motor

costs of each movement. Indeed, a variation of block-copying task that varied the angle of the

model found participants looked less frequently at the model when looking required a larger
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body movement [23]. Similarly, participants comparing two similar-looking cupboards

reduced the number of gaze shifts between the cupboards as the distance between the cup-

boards increased [17], presumably to reduce the number of costly head movements.

How might task demands shape visual exploration with the eyes versus

head?

Despite these examples of how changing the motor costs of looking (e.g., placing targets closer

or farther) alters the coordination of eyes and head within a task, no studies have investigated

how eyes versus head are coordinated to meet the informational demands across different tasks
and environments. Mobile eye tracking studies indicate that observers tend to fixate task-rele-

vant objects when completing tasks such as making a sandwich or cup of tea [24–27]. How-

ever, these examples—which measured eyes only—cannot reveal how both eyes and head are

adapted to meet different task demands, given the flexibility and variability inherent in coordi-

nating the eyes and head. Furthermore, locomotion—walking from one place to another—is a

common “sub-task” that we must visually guide while completing a primary task, as seen in

more natural tasks [28] and everyday life.

Several studies have described the role of the eyes and head in the control of walking over

easy versus challenging terrain. Although these examples do not compare different task types,

they demonstrate how participants adapt both eyes and head to respond to varying informa-

tional demands of locomotor control. Matthis and colleagues [10] found that in the less-

demanding task of walking over flat terrain, only half of fixations were directed to the ground

surface. Spread (or dispersion)—the standard deviation of position over the course of a task—

is a commonly-used metric to examine differences in the distribution of visual exploration

across tasks. ‘t Hart and colleagues [29] found that the horizontal spread of eye-plus-head gaze

(�14º) was greater than the vertical spread of gaze (�7º), reflecting participants’ propensity to

visually explore targets to the left and right of the body rather than gazing down at the ground.

Even though the 14º horizontal spread is well below the oculomotor range of 50º-55º, the head

contributed to the horizontal spread of gaze: The horizontal spread of eye position was only

4º-5º, thus, the head accounted for the remaining portion. Similarly, Tomasi and colleagues

[9] measured horizontal eye and head movements in walking participants using wearable iner-

tial sensors, and found the head’s rotation was responsible for between 37-46% of the total

gaze shift amplitude across participants. Other studies of eye movements while walking over

flat ground consistently find a larger horizontal than vertical spread of eye position: 14.2º ver-

sus 9.7º [30], 7º versus 5º [7], and 11.8 versus 7.2º [5].

Thus, the contributions of eyes and head during simple walking, that is, walking without a

secondary task, are well characterized. Observers preferentially spread their gaze horizontally

rather than vertically to visually explore the surroundings, but if walking is made more difficult

the vertical spread of gaze extends down to better guide foot placement [10, 14, 29]. Moreover,

the head contributes more than 35% of the rotation needed to shift gaze, even at amplitudes

that are well within the limits of the oculomotor range. Our current studies build on this work

to ask how eyes and head adapt to the addition of a non-locomotor task while walking, rather

than altering the difficulty of walking. By adding a goal—searching for targets in a complex

visual environment—we can compare the role of eye and head movements under different

task demands.

How might searching while walking alter the roles of eye and head compared with walk-

ing alone? Although searching may induce participants to make larger eye movement shifts

to scan more broadly within a photograph [31], this may not translate to a fully-mobile

searching task. A prior study of whole-body search in virtual reality found that participants
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primarily looked at mid-height regions rather than searching in areas above and below the

body [32], thus, we expect search to primarily impact the horizontal component of gaze

(especially with observers walking on flat ground). We predict that gaze will be spread more

widely around the observer to successfully search compared to simply walking along a path.

However, given the flexibility of coordinating eyes, head, and body, an increase in spread of

gaze while searching could be accomplished in different ways: a larger spread of eye position

without a change in head position, a larger spread of head position without a change in eye

position, or increasing spread of both eyes and head. One possibility is that observers rotate

the head more broadly to search in areas to the left and right of the current walking direction

beyond the range of the eyes. Another possibility to rule out, however, is whether observers

avoid extreme head rotations while searching if it disrupts their ability to guide locomotion.

If so, we would observe an increase in the spread of eye movements but not head movements.

It is important to note that we make no specific claim about the extent to which changes in

the spread of eye or head movements might reflect conscious decision making. Although it is

true that observers can consciously choose to employ greater head versus eye movements

while exploring, it seems more likely—especially while engaged in a task like searching—that

participants are not consciously deciding moment-to-moment how much to move the eyes

versus head. Regardless, the current studies were not designed to distinguish between these

possibilities.

Current study

Although previous research has demonstrated the role of task in shaping eye movements, no

prior work has considered how observers adapt the coordination of eye and head movements

to changing task and environment demands in the context of locomotion. Whereas eye and

head movements have different constraints (e.g., speed, range of movement, energetic cost),

there is considerable flexibility in how much the eyes versus the head contribute to looking in

different directions. We choose to compare two types of naturalistic locomotor tasks, a simple

walking task in which participants traversed a campus path, and a search and retrieval task in

which participants walked around a cluttered campus courtyard to find and retrieve 6 hidden

targets (referred to as the search task for brevity). Whereas the demands on visual exploration

in the walking task were minimal—participants simply needed to stay on a flat, paved path—

the searching task required participants to simultaneously scan their surroundings to find tar-

gets and to start, stop, and turn while walking from one place to the next. The courtyard con-

tained picnic tables, trees, and open concrete areas, creating a more challenging visual scene to

search in as participants’ view of different areas was occluded. The novel contributions of the

current studies are: 1) direct comparisons of visual exploration between walking and searching

tasks, and 2) comparing head movements and eye-plus-head gaze shifts, not just eye move-

ments, across tasks.

We report two studies that employed identical procedures but differed in the data recorded.

In both studies, participants’ eye movements were recorded using a mobile eye tracker, and

participants’ walking behaviors were recorded with a GPS monitor worn on the wrist to under-

stand the locomotor aspects of the two tasks. Study 2 added wearable inertial sensors that mea-

sured participants’ head rotations. While wearing the eye tracker, GPS monitor, and (in Study

2) inertial sensors, participants completed the walking task by following a campus path from

the Psychology building to an outdoor courtyard. Afterwards, participants completed the

search and retrieval task in the courtyard by finding and picking up six targets (fabric squares

marked with a particular shape) placed in different locations, while ignoring six distractor tar-

gets (similar looking fabric squares with a different shape).
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We calculated how the spread of visual exploration differed between the the two tasks based

on the horizontal rotation (in degrees) of the eyes (Studies 1 and 2) and head (Study 2). As in

past work [5, 7, 30], spread was defined as the standard deviation of the horizontal rotation of

the eyes/head and represented the degree to which participants distributed their visual explo-

ration narrowly versus broadly over the duration of each task. As in other studies [9], we

focused on horizontal eye and head movements because horizontal gaze movements are more

common than vertical gaze movements when walking over flat terrain [7, 29]. Study 2 also pro-

vided an opportunity to extend laboratory studies that measured the contribution of the head

to gaze shifts of varying eccentricity to a more naturalistic task. By calculating the total ampli-

tude of each gaze shift (adding the rotations of eyes and head together), we could determine

the head contribution (in percentage) of each gaze shift and whether that varied according to

task. We predicted that the head would increasingly contribute to larger amplitude gaze shifts

regardless of task, consistent with previous laboratory studies [18, 20]. Moreover, we predicted

that the head would contribute more to gaze shifts in the searching task to facilitate a wider

spread of gaze in the environment.

Study 1: How are eye movements adapted to explore in different

tasks/environments?

Method

The study’s procedures were designed in accordance with the Declaration of Helsinki. The UC

Riverside Institutional Review Board approved the project (HS-14-137 “Eye movements dur-

ing everyday activities”) before data collection began. Participants gave written informed con-

sent before the study began.

Participants. The final sample consisted of N = 59 adult participants between the ages of

18 and 31 years (M = 20.81 years, SD = 3.0, 39 female, 20 male). One additional participant

was run in the study, but their data were excluded from the final sample after their eye-track-

ing error was found to be unusually large (> 5º). To be included in the study, participants

were required to have normal vision or corrected-to-normal-vision with contact lenses (eye

glasses could not be worn with the eye tracking headgear) and to have no motor impairments

that would prevent them from engaging in the tasks. Additional participants were run in the

study but excluded before data processing due to bystander interference (n = 2), technical

difficulties (e.g., battery or SD card failure) (n = 4), or because the camera slipped during the

searching task (n = 7).

Participants were undergraduate students at the University of California, Riverside who

received course credit as compensation for their participation. Written informed consent was

obtained at the beginning of the experimental session. Participants described their race as:

White (N = 20), Asian (N = 15), Black (N = 2), more than one race (N = 8), or chose not to

answer (N = 14). Participants described their ethnicity as: Hispanic or Latinx (N = 27), Not

Hispanic or Latinx (N = 29), or chose not to answer (N = 3).

Walk and search task settings. The walking task took place along a 311-m path in the

University of California, Riverside campus. Participants walked East for approximately 26 m,

North for 150 m, then East for 135 m on paved sidewalks. This path took participants in

between closely spaced buildings and also through a wide, open field. The walking path ended

60 m away from the courtyard, ensuring that participants could not see search target locations

before they began the search task. The search arena was a courtyard that measured 45 m

wide × 30 m long for a total area of 1350 m2. Approximately 823 m2 was garden space inacces-

sible to pedestrians. The remaining space was comprised of mature trees, seating areas, and

wide cement walkways. Both the walking path and search arena were open to the campus
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public, so pedestrians were often present while participants walked through both areas. Exam-

ples of one participant’s GPS location overlaid on a campus map is shown for the walking and

searching tasks in Fig 1A. An example video available at https://nyu.databrary.org/volume/

1147 shows excerpts from the walking and searching tasks.

In the search arena, targets and distractors were fixed to trees and cement benches located

throughout the courtyard in a pre-specified set of locations. Targets and distractors were 10

cm × 10 cm orange fabric squares with a 3.8 cm × 2.5 cm shape (rectangle or diamond) drawn

on the front in black ink. Of the targets affixed to trees (6 total), 2 targets each were each

secured 0.25 m from the ground, 1 m from the ground, and 1.5 m from the ground. Of the tar-

gets affixed to benches, targets were secured to the frame of the cement benches, never the

seats or legs (each bench measured approximately 1.5 m long × 0.3 m wide).

Eye movement and GPS recording. A Positive Science head-mounted eye tracker was

used to record the eye movements of each participant. An infrared camera that pointed

towards the participant’s right eye (eye camera) recorded eye movements, and the field of view

of each participant was recorded by a camera that sits above the right eye and points out (field

of view camera). Both eye and field of view (FOV) cameras were affixed to a modified eye glass

frame that was securely hooked over each ear and held onto the participant’s head with a strap.

Each camera’s video was fed to a recording device that was stored in a belt bag that participants

wore over their right shoulder for the duration of the study. Participants wore a wide brimmed

Fig 1. Characteristics of locomotion derived from GPS data in the walking and searching tasks (orange = walking

task, blue = search and retrieval task). A) Example GPS recording of a participant’s path in the walking and searching

tasks overlaid on a campus map. Graphs show differences in B) straightness ratio, C) mean walking speed, and D) SD

of walking speed for Studies 1 and 2 according to task. Each symbol represents a single participant’s data; points are

horizontally offset for visibility. Black error bars are centered on the mean and show ±1 standard error.

https://doi.org/10.1371/journal.pone.0256463.g001
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hat to reduce eye tracker data loss from sunlight [10] and a Polar V800 Multisport GPS watch

on their right wrist. The example video (https://nyu.databrary.org/volume/1147) shows real-

time eye position and GPS data for an example participant.

Before the start of each task and at the end of the study, participants completed a calibration

procedure that maps participant’s eye position from the eye camera to their gaze location in

the FOV camera. During the calibration procedure, the experimenter stood approximately 3

m from the participant and asked the participant to hold their heads as still as possible while

moving only their eyes to look at locations that the experimenter indicated. The experimenter

cued the participants to look at a walking stick with a brightly colored piece of cardboard at

one end. The experimenter moved the colored calibration target in different locations within

the FOV camera’s field of view: along the central, vertical axis (top to bottom), along the hori-

zontal axis (left to right), and along both diagonals (from corner to corner). The experimenter

periodically stopped the target to allow the participant time to fixate on the calibration target

without blinking or moving their head.

These video recordings were used offline (after the session) to calibrate the eye tracker

using Yarbus software (Positive Science LLC), producing horizontal and vertical time

series of gaze locations in field of view video (pixel) coordinates. Calibration accuracy was veri-

fied using an additional set of 5 target looks, independent from those used to calibrate the eye

tracker. Calibration validation was done at the end of the walking task and at the end of the

search task. For each validation point, we calculated the difference between the actual target

location in the FOV camera and the gaze location in degrees—calibration error. In Study 1,

participants’ calibration error averaged M = 2.73º (SD = 0.69), ranging from 1.25º to 3.95º.
Procedure. Participants were fitted with the head-mounted eye tracker, hat, belt bag and

GPS watch in the laboratory. Afterwards, the experimenter led them to a flat, shady, area out-

doors for the first eye tracker calibration. The GPS watch was turned on after the calibration;

this event was recorded in the eye tracker’s FOV camera to allow synchronization. Next, par-

ticipants completed the walking task along the prescribed path. The experimenter walked

alongside the participant, providing verbal directions about where to go. At the conclusion of

the walking task, the participant completed the second eye tracker calibration to account for

any potential movement of the eye tracking equipment that may have occurred during the

walking task.

Before the start of the search and retrieval task, the experimenter read instructions that

detailed the boundaries of the search arena, explained how to identify the assigned targets ver-

sus the distractors, and how many targets were hidden (6 targets and 6 distractors). Partici-

pants were instructed to pick up each of the six targets with their hands and to leave the

distractors in place. Participants were told to retrieve their targets as quickly and efficiently as

possible, without running. After hearing the instructions, the search and retrieval task began.

A final calibration check after the search task ensured the accuracy of the eye tracking data

throughout the task.

Data processing. The first step in data processing was to synchronize the eye tracking and

GPS time series data. The FOV camera frames that corresponded to the the GPS watch turning

on/off were recorded from the FOV camera video. Using those synchronization points, we off-

set, scaled, and upsampled (from 1 Hz to 30 Hz) the GPS time series to match the eye tracker’s

time series. FOV camera videos from the eye tracker were also used to find and record the

beginning and end times of each task. After synchronization, time series were extracted for

horizontal eye rotation and GPS coordinates during each task to be used in subsequent

analyses.

GPS coordinates were used to calculate three measures to characterize how participants

walked during each task. Walking speed was calculated based on the length of each
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participant’s total walking path in each task divided by the task time. Walking speed SD mea-

sured the amount that participants changed their speed during each task (e.g., stopped and

started walking) by calculating their instantaneous speed for each video frame, and then calcu-

lating the standard deviation of instantaneous speed across the task. Finally, the degree to

which participants walked a straight path versus a circuitous path was expressed by the

straightness ratio: the total length of the walking path divided by the shortest path between the

starting and stopping points (1.0 = a perfectly straight path). Although it is expected that paths

while walking will be straighter compared with paths while searching, we report these values as

a way to characterize the degree of straightness to compare with future work.

Horizontal eye gaze coordinates represented how much participants rotated their eyes from

left to right within the FOV camera image, measured in pixels. In order to measure eye-in-

head rotations in degrees, we converted pixels to degrees based on the camera’s horizontal

field of view, 111º. However, the wide-angle fisheye lens meant that the pixel-to-degrees calcu-

lation could not be performed without first correcting for lens distortion [9]. We used the

Matlab “Camera Calibration Toolbox” to correct the points for lens distortion before convert-

ing to degrees of visual angle. A checkerboard test image was recorded with the FOV view

camera, which allowed the toolbox to create a model of the lens. The undistortFisheye-
Points function was then used to transform each participant’s raw eye movement data to

remove the lens distortion. After this transformation, the eye movement data were then con-

verted from pixels into degrees.

Using the corrected horizontal eye movement data (in degrees of rotation), we determined

how much participants distributed horizontal eye movements widely versus narrowly by cal-

culating spread: The standard deviation of horizontal eye position (in degrees) across each

task. Fig 2A shows one participant’s eye rotation distributions and corresponding spread mea-

sures in the walking and searching tasks.

Results and discussion

Analyses were conducted in R [33]. Paired t-tests were used to calculate the difference in each

measure between walking and searching tasks. We checked for outliers based on a threshold of

3 SD around the mean within a condition, but no outliers were found. The dataset and analysis

code are shared in a reproducible “capsule” on CodeOcean (https://doi.org/10.24433/CO.

8767371.v2).

Locomotion differed between the tasks/environments. The walking task time averaged

M = 268.1 s (SD = 36.5) with participants walking a total distance of M = 313.0 m (SD = 23.8).

The searching task time averaged M = 625.4 s (SD = 145.7) with participants walking a total

distance of M = 305.7 m (SD = 99.2). Analysis of locomotion from GPS data illustrated the dif-

ferences in behavior between the walking and searching tasks (Fig 1B–1D. In the walking task,

participants’ paths were straighter (straightness ratios closer to 1.0, M = 1.38, SD = 0.05), they

walked more quickly (speed M = 1.18 m/s, SD = 0.15), and they walked at a more regular pace

(speed SD M = 0.28 m/s, SD = 0.09). In the search and retrieval task, participants walked a

more circuitous path (straightness ratio farther from 1.0, M = 3.37, SD = 1.99) at a slower aver-

age speed (speed M = 0.49 m/s, SD = 0.09), and their speed varied considerably from moment-

to-moment while switching between searching for targets and stopping to retrieve them

(speed SD M = 0.47 m/s, SD = 0.06). Significant paired t-tests were found comparing straight-

ness ratios (t(57) = -7.63, p<.0001, d = -1.00), average walking speed (t(57) = 33.6, p<.0001,

d = 3.92), and walking speed SDs (t(57) = -15.0, p<.0001, d = -1.97) between the two tasks.

Visual exploration differed across tasks/environments. Fig 3 (Study 1) shows that the

horizontal spread of eye movements was greater in the search and retrieval task (M = 12.9º,
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SD = 2.00) compared with the walking task (M = 11.7º, SD = 2.59). When searching for targets,

participants spent longer periods of time with their eyes rotated far to the left/right, whereas

participants kept their eyes in a more narrow range within their orbits when walking without

searching. This difference was confirmed by a significant paired-samples t-test between walk-

ing spread and searching spread, t(58) = -4.18, p = .0001, d = -0.54. Thus, participants adapted

their eye movements to fit each task. With little demand on visual attention in the walking

task, participants kept their eyes in a narrow window centered within the head. In contrast,

participants who searched and retrieved targets broadened the scope of their eye movements

to spread their gaze while looking for targets.

Fig 2. Example density plots of (A) eye rotation, (B) head rotation, and (C) gaze rotation (eyes-plus-head) for one

participant. Orange lines show the distribution for the walking task and blue lines show the distribution for the search

and retrieval task. Arrows indicate the approximate biological limits on (A) eye rotation and (B) head rotation for

reference. Text labels show the spread of visual exploration (SD) based on the rotation data from each task.

https://doi.org/10.1371/journal.pone.0256463.g002
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Study 2: How are eye and head movements adapted to explore in

different tasks/environments?

Study 1 indicated that participants adapted the spread of eye movements to fit the demands of

the task. When walking along a straight, uniform path with no other demands on attention,

participants moved their eyes within a small area. In contrast, when searching and retrieving

targets participants’ eyes were often rotated in different directions (within the head). However,

because gaze direction in the world, relative to the body, depends on both eye and head rota-

tion, Study 1 could not measure how much gaze was spread in different directions. It is possi-

ble that the more extreme rotations of the eyes during the search task were oppositional

movements to compensate for head rotation. If so, the observer would not truly be spreading

gaze more in the searching task compared with the walking task. Alternatively, if participants

in the search task rotated their eyes and heads more in the same direction at the same time,

then the spread of gaze when searching would truly be greater. Thus, Study 2 was designed to

extend Study 1 by measuring head rotation.

Method

The study’s procedures were designed in accordance with the Declaration of Helsinki. The UC

Riverside Institutional Review Board approved the project (HS-14-137 “Eye movements dur-

ing everyday activities”) before data collection began.

Participants. This study included N = 28 undergraduate students at the University of Cal-

ifornia, Riverside between the ages of 18 and 24 years old (M = 20.29 years, SD = 1.43, 16 male,

12 female). Participants were recruited from the psychology department participant pool at

the University of California, Riverside and received course credit as compensation for their

participation in this study. To be included in the study, participants needed to have normal or

corrected-to-normal vision without wearing eyeglasses and were required to have no motor

impairments that would prevent them from engaging in the tasks. Each participant gave

informed consent at the beginning of the experimental session. Participants described their

race as: Asian (N = 13), White (N = 7), Black (N = 2), Native Hawaiian or other pacific islander

(N = 1), more than one race (N = 1), or chose not to answer (N = 4). Participants described

their ethnicity as: Hispanic or Latinx (N = 8) or Not Hispanic or Latinx (N = 20). Five

Fig 3. Horizontal spread (standard deviation of rotational position in degrees) in the walking task (orange

symbols) versus search and retrieval task (blue symbols). Study 1 shows spread for horizontal eye movements, and

Study 2 shows spread for eye movements, head movements, and gaze-in-body (eye-plus-head rotation). Each symbol

represents a single participant’s data; points are horizontally offset for visibility. Black error bars are centered on the

mean and show ±1 standard error.

https://doi.org/10.1371/journal.pone.0256463.g003
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additional participants completed the study, but their data were ultimately excluded from the

final sample due to technical difficulties (n = 3), the camera slipping out of place during the

searching task (n = 1), and bystander interference (n = 1).

As in Study 1, calibration validation was performed at the end of the walking task and at the

end of the search task. Calibration errors for the 28 participants averaged M = 3.50º (SD = 0.81),

ranging from 1.70º to 4.57º.
Head movement recording. All procedural aspects of Study 2 were equivalent to Study 1,

with the only change being the addition of wearable inertial motion sensors that recorded

head position. Two STT systems (STT-IWS) motion sensors were worn throughout the dura-

tion of the entire study. One sensor was placed on the seventh cervical vertebra (C7) using a

Velcro chest harness and the other was secured on top of the participant’s head (underneath

the wide-brimmed hat) with a Velcro headband. To facilitate synchronization of the motion

sensors with the eye tracking data, participants were instructed before each eye tracking cali-

bration to hold their heads still and look straight ahead and then to make a quick head rotation

to the left and then to the right.

Data processing. Measures of walking from GPS data and measures of eye movement

spread were processed as in Study 1. To integrate head rotation measures with eye movement

and GPS data, we extracted head rotation time series from the STT systems using their propri-

etary iSen software. The software calculated time series of head position (400 Hz) from the

acceleration and gyroscope data collected by the head sensor, using the C7 sensor as a refer-

ence point. To synchronize the head movement time series to the eye-tracking time series,

we identified the head-turn synchronization events in the eye tracker’s FOV camera video

(moment that the field of view changed during the rapid head rotation) and the matching

timestamp from the head rotation time series data from a plot. Based on the synchronization

event times at the beginning and end of the session, we offset, scaled, and downsampled the

head rotation data to match the eye movement and GPS time series. Eye movement data were

undistorted and converted into degrees as in Study 1, resulting in synchronized time series of

horizontal eye and head rotation in the same measurement units. The example video (https://

nyu.databrary.org/volume/1147) shows head rotation data synchronized with eye rotation and

GPS.

Head rotation spread was calculated in the same way as eye movement spread. In addition,

we calculated a gaze-in-body time series by adding eye and head rotations together (negative

rotations corresponding to left, 0 corresponding to center, and positive rotations correspond-

ing to right). We calculated gaze-in-body spread from this time series (the standard deviation

of gaze position) to determine the overall distribution of gaze relative to the observer’s body.

Fig 2B and 2C shows one participant’s head and gaze rotation distributions and corresponding

spread measures in the walking and searching tasks.

Results and discussion

We compared locomotion (straightness, walking speed, and walking speed SDs), visual explo-

ration (spread of eye/head movements), and the head contribution to gaze shifts across tasks.

With the additional factor of eye versus head movements, we employed linear mixed-effect

models (LMMs) in R using the lme4 package [34] with participant as a random effect. Maximal

models that included random slopes of fixed factors failed to converge, so only random inter-

cepts of participant were included. Significance tests for LMMs were calculated using the

lmerTest package [35] implementation of the Satterthwaite correction. Pairwise follow-up tests

were corrected for multiple comparisons using the Holm-Bonferroni correction. All measures

were checked for outliers according to a 3-SD criterion, but none were found. The data and
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analysis code are available in the same CodeOcean capsule as Study 1 (https://doi.org/10.

24433/CO.8767371.v2).

Locomotion differed across tasks/environments. The walking task time averaged

M = 279.7 s (SD = 20.5) with participants walking a total distance of M = 324.2 m (SD = 12.0).

The searching task time averaged M = 731.1 s (SD = 157.0) with participants walking a total

distance of M = 407.6 m (SD = 125.2). The three GPS-derived measures of locomotion differed

according to task, mirroring the results of Study 1 (Fig 1B–1D). When completing the walking

task, paths were straighter (M = 1.37, SD = 0.04), walking speed was greater (M = 1.16 m/s,

SD = 0.09), and they walked at a more regular pace (speed SD M = 0.22 m/s, SD = 0.06). When

searching, paths were less straight (M = 3.02, SD = 1.01), average walking speeds were slower

(M = 0.55 m/s, SD = 0.09), and speed varied more (speed SD M = 0.50 m/s, SD = 0.06). Signifi-

cant paired t-tests were found comparing straightness ratios (t(27) = -8.57, p<.0001, d =

-1.62), average walking speed (t(27) = 24.3, p<.0001, d = 4.6), and walking speed SDs (t(27) =

-18.6, p<.0001, d = -3.51) between the two tasks.

Visual exploration differed across tasks/environments. Fig 3 shows the spread of visual

exploration for the eyes, head, and gaze (eyes-plus-head) for Study 2. Consistent with our pre-

diction, gaze was spread more broadly during the search task (M = 28.5º, SD = 3.65) compared

with the walking task (M = 19.5º, SD = 6.01; t(27) = -8.82, p<.0001, d = -1.67).

How were eyes and head adapted between the walking and searching tasks to spread gaze-

in-body more broadly when walking and searching? We used a 2 task (walking vs searching) ×
2 effector (eyes vs head) LMM to model spread based on task and effector as fixed factors and

participant as a random intercept. Replicating Study 1, and consistent with the gaze result in

the previous paragraph, a significant main effect of task, F(1, 81) = 80.18, p<.0001, indicated

that spread was greater when searching compared with walking. A significant main effect of

effector, F(1, 81) = 26.68, p<.0001, and a significant task × effector interaction, F(1, 81) =

22.70, p<.0001, reveal that the increase in gaze spread from walking to searching was more

dependent on the head compared with the eyes. When walking, the spread in head position

(M = 11.3º, SD = 4.72) and eye position (M = 11.1º, SD = 1.94) were similar, and spread did

not significantly differ in a pairwise comparison between eyes and head (p = .77). In contrast,

head position spread in the searching task (M = 19.2º, SD = 4.30) was significantly greater than

the spread in eye position (M = 13.5º, SD = 1.5; p<.0001).

Thus, the spread of both eye and head movements increased from walking to searching,

allowing gaze to be distributed more broadly in the environment when looking for and retriev-

ing hidden targets. However, the adaptation of spread was more pronounced in head move-

ments compared with eye movements.

Head contribution to gaze shifts differed across tasks/environments. The final set of

analyses examined the head contribution to gaze shifts to different eccentricities relative to the

body in the two tasks. Using the gaze-in-body time series, we identified local minima (shifts to

the left of the body) and maxima (shifts to the right of the body) using Matlab’s findpeaks func-

tion. Peaks were required to be a minimum of 10 video frames (333 ms) apart and were only

recorded during times that both eyes and head were rotated in the same direction. For each

peak, we calculated the head contribution as the percentage of the gaze shift accomplished by

the head. For example, if the eyes rotated 20º to the left and the head rotated 20º to the left for

a combined eccentricity of 40º, the head contribution would be half (50%) of the total eccen-

tricity. Fig 4 shows three examples of the head’s contribution to gaze shifts of different eccen-

tricities (the black arrow indicates the total eccentricity of the shift, the green shaded region

indicates the amount the head rotated, and the gray region represents the additional rotations

of the eyes). In order to analyze the relative contribution of the head as a function of the total

eccentricity of the gaze shift, we found each participant’s average head contribution by
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aggregating over peaks in eight 10º-wide bins (i.e., total shifts 10º-20º, 20º-30º, 30º-40º, 40º-
50º, 50º-60º, 60º-70º, 70º-80º, and 80º+). In Fig 4, each bin is labelled by the lower bound of

the bin (e.g., 10º-20º is labelled 10º).
Fig 4 shows that more eccentric gaze shifts recruited a greater head contribution in both

walking and searching tasks, suggesting that previous laboratory results [18, 20] generalize to a

naturalistic locomotor task. Unlike laboratory tasks, the head contributed to even the smallest

shifts of gaze (10º). Visual inspection of Fig 4 suggests that eyes and head played consistent,

near-equal roles at smaller eccentricities (less than 50º), but the head increasingly contributed

at larger eccentricities. However, the head contributed more in the searching task compared

with the walking task at every eccentricity. These results were confirmed by a 2 task × 8 eccen-

tricity LMM on head contribution with random intercepts by participant, which revealed a sig-

nificant main effect of task, F(1, 425.12) = 93.58, p<.0001, and a significant main effect of bin,

F(7, 424.97) = 8.02, p<.0001. Although it appeared that the increase in head contribution

occurred at different eccentricities for each task (between 40º-50º for the searching task but

between 60º-70º for the walking task), the task × eccentricity interaction was non-significant

(p = .14). Pairwise comparisons between tasks at every eccentricity were statistically significant

(ps<.047), confirming that the head contributed more when searching regardless of the eccen-

tricity of the gaze shift.

General discussion

To summarize, the current study investigated how task and environment affect the spread of

eye and head visual exploration during outdoor locomotion. We found that that eye and head

movements are adapted differently when walking along a path (walking task) compared with

walking around a cluttered courtyard while searching for and retrieving targets (searching

Fig 4. Head contribution to gaze shifts of varying eccentricity (x-axis). Each symbol shows the mean head

contribution to a gaze shift—the percentage of the gaze shift accomplished through head rotation as opposed to eye

rotation. Symbols above the black horizontal line at 50% indicate that the head contributed more than the eyes;

symbols below 50% indicate that the eyes contributed more to the gaze shift compared to the head. Orange symbols

represent the walking task and blue symbols represent the search and retrieval task. Error bars (within the symbols)

indicate ± 1 standard error. Three top-down drawings of an observer depict the eye contribution (gray shading) versus

head contribution (green shading) for gaze shifts at 40º in the search task, 60º in the walking task, and 70º in the search

task.

https://doi.org/10.1371/journal.pone.0256463.g004
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task). More specifically, individuals spread their gaze (relative to the body) more broadly dur-

ing the search and retrieval task compared to the walking task through a large increase in the

spread of head movements paired with a modest increase in the spread of eye movements. We

also extended a laboratory effect—that the head contribution to a gaze shift increases as a func-

tion of the amplitude of a gaze shift—to show that it holds in walking observers, and addition-

ally showed that the degree of head contribution changes depending on the task/environment.

The head’s contribution to gaze shifts was greater while searching compared to when walking

for gaze shifts of every amplitude.

There is abundant research from both screen-based [31, 36–38] and mobile eye tracking

studies [16, 24, 26] showing that eye gaze is adapted to the observer’s task. As expected, we

found in Study 1 that the spread of eye movements increased modestly when searching com-

pared with walking (12.9º versus 11.7º). Given that the horizontal eye spread in previous walk-

ing studies ranged from 5º-14º [5, 7, 29, 30], a task difference of 1.2º appears quite small, even

though it was statistically significant. Yet, measuring the eyes alone tells only part of the story.

As expected, the degree to which gaze-in-body changed between tasks was large (28.5º for

searching versus 19.5º for walking in Study 2), demonstrating that the two tasks placed very

different demands on visual exploration that were not apparent from examining the move-

ments of the eyes alone. Indeed, the largest adaption was evident in movements of the head,

with a spread of 19.2º in head position observed while searching compared to only 11.3º while

walking. The differential contributions of eyes and head show the value of measuring head

position during visual exploration. Research using eyes-only measures of visual exploration

should be especially cautious in the treatment of null effects if the head’s contribution is not

characterized.

Given the winding, circuitous paths participants took through the courtyard when search-

ing (Fig 1), it was expected that participants would distribute gaze more broadly around the

environment to explore while searching. However, the flexibility in how the eyes, head, and

body can contribute to gaze shifts means that the eyes alone, the head alone, or eyes and head

in different combinations could have been adapted to meet the demands of the searching task.

Indeed, the gaze density plot in Fig 2 (bottom) shows that most shifts of gaze were well within

the biomechanical range of the eyes and head. But despite the multiple degrees of freedom

afforded to participants, they arrived at a similar solution: increasing the spread of both eyes

and head when searching, but increasing the spread of the head by a greater degree. Whether

this is the most optimal or efficient strategy remains to be tested. Indeed, we cannot claim

from the present work that energetic cost is the critical factor in shaping how eyes versus

head contribute. Although head movements are more energetically costly, they also generate

vestibular and proprioceptive information that eye movements do not. Future work could

experimentally restrict head movement or increase the energetic cost of head movements to

determine: 1) whether the eyes compensate by increasing their spread when head movement is

reduced, and 2) whether a diminished contribution of the head to visual exploration degrades

search performance.

Finally, measuring concurrent eye and head movements afforded us an opportunity to ask

how the eyes and head contribute to gaze shifts of varying amplitude. Whereas the compari-

sons of head versus eye speed/spread were temporally coarse (aggregating across the entire

task), measuring the the eye and head contributions to each gaze shift showed how they were

coordinated in the moment. Like Tomasi and colleagues [9], who studied eye and head rota-

tions in natural outdoor locomotion, we replicated the laboratory finding that the head contri-

bution to gaze shifts increases as the total amplitude increases [18, 20, 21]. Our investigation

extends those prior studies to show that this is true both while walking and searching in more

naturalistic situations. Moreover, our study adds a novel finding: The relative contributions of
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eyes and head change as a function of task/environment, not merely amplitude, as evidenced

by an overall greater head contribution in the search task. This suggests that the overall strategy

of visual exploration changed in the searching task—the head was not just recruited to look at

extreme locations, but contributed more to visual exploration in all locations. Perhaps, the

head contributed more to smaller shifts of gaze in the searching task in anticipation of subse-

quent, larger shifts in the same direction, as in previous laboratory work [22]. How much this

strategy is a conscious choice of the participant remains to be tested. Although participants

might introspectively recognize that they “look around” more in the searching task, it seems

unlikely that they are aware of precisely how much they adapted movements of the eyes versus

head. Since visual exploration is over-learned—we continually shift gaze from moment to

moment—observers may automatically adjust their exploration to suit the task. Developmen-

tal studies of visual exploration in infants and children may shed light on how exploratory con-

trol is acquired.

We acknowledge several limitations in our study that can be addressed in future research.

First, we designed the study to use two different environments, each paired with a different

task, to create unique demands on visual attention. Although this was helpful for using loca-

tions that fit with each activity (e.g., the walking path did not contain locations that would have

been suitable for hiding targets), it also makes it more difficult to interpret what differences

between the conditions were most important for changing visual exploration. In future work,

we can compare walking with walking and searching in the same environments to better tease

apart how the demands of the task and the visual features of the environment may have con-

tributed to visual exploration. We also note that aggregating visual exploration across the entire

walking task and entire searching task is an oversimplification. Although it was a useful way to

broadly characterize how the spread of visual exploration differs across the two tasks, we are

unable to address how moment-to-moment changes in actions and goals within each task (i.e.,

searching, retrieving, navigating during the search task) may have changed visual exploration

over time. Finally, we acknowledge that the current studies cannot address the degree to which

the selection of eye and head movements reflect conscious versus automatic processes.

In conclusion, the current studies show the importance of measuring both eyes and head to

understand gaze behavior in complex, real-life tasks. Although differences were apparent in

eye movements alone (Study 1), studying eye and head movements together uncovered that

each effector contributed differently to visual exploration (Study 2). Adaptations to eyes-plus-

head gaze were evident both in aggregate across the task as well as at the level of moment-to-

moment gaze shifts, showing that the entire visual exploratory system was adapted to meet

task demands. Our study shows the feasibility of using wearable, wireless eye and head tracking

to characterize behavior “in the wild”; this method can be used profitably to investigate eye-

head adaptation in a wider range of tasks across different environments. In doing so, we may

better understand how visual exploration meets the various demands of daily life.
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