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Abstract

Head-mounted eye tracking is a new method that allows researchers to catch
a glimpse of what infants and children see during naturalistic activities. In this
chapter, we review how mobile, wearable eye trackers improve the construct
validity of important developmental constructs, such as visual object experiences
and social attention, in ways that would be impossible using screen-based eye
tracking. Head-mounted eye tracking improves ecological validity by allowing
researchers to present more realistic and complex visual scenes, create more
interactive experimental situations, and examine how the body influences what
infants and children see. As with any new method, there are di�culties to
overcome. Accordingly, we identify what aspects of head-mounted eye tracking
study design a↵ect the measurement quality, interpretability of the results, and
e�ciency of gathering data. Moreover, we provide a summary of best practices
aimed at allowing researchers to make well-informed decisions about whether
and how to apply head-mounted eye tracking to their own research questions.
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1. Introduction

Psychology is an empirical science. Technological and methodological ad-
vances o↵er psychologists barrier-breaking research opportunities to collect new
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types of data, improving the quality of measurements provided by older meth-
ods. Better measurement can mean improvements in accuracy and/or preci-5

sion. In the 1930s, McGraw (1935) filmed infants’ footfalls, allowing unrivaled
accuracy and precision in describing the parameters of infant gait compared to
experimenter observation. Better measurement quality can also mean improve-
ments in construct validity—documenting behavior in a way that more closely
aligns with the psychological construct. Although accurate and precise, films of10

infants traversing a straight path in the lab fall short of describing how infants
actually walk in day-to-day life. The advent of portable camcorders allowed
researchers to capture the footsteps of infants in the home, improving the con-
struct validity and ecological validity of locomotor measurements (Adolph et al.,
2012).15

Eye movement recording has seen a similar progression (Figure 1). The
advent of screen eye trackers (SETs)—devices that record where a seated ob-
server looks on a computer display—allowed researchers to accurately and re-
liably record eye gaze, but in a limited context. More recently, head-mounted

eye trackers (HMETs)—wearable eye tracking devices that can measure eye20

movements in a mobile observer—allow researchers to study eye gaze in more
naturalistic situations, such as driving (Land & Lee, 1994), preparing food (Land
& Hayhoe, 2001), playing sports (Land & Furneaux, 1997), or going on a hike
(Matthis et al., 2018). The thesis of this paper is that both aspects of measure-
ment quality—accuracy/reliability and construct validity—are important when25

researchers choose how to measure behavior. Our paper will focus on the benefits
and challenges of head-mounted eye tracking to illustrate how researchers can
strike a balance between these two aspects of quality. Some perspectives on the
new technology have been unabashedly optimistic: “... newly available portable
eye-tracking systems o↵er a cost-e↵ective, easy to apply, and reliable measure of30

eye gaze and saccades in an ecological environment” (Shamay-Tsoory & Mendel-
sohn, 2019). Such optimism has faced opposition. Indeed, Hessels et al. (2020)
harbor such strong concerns that they claim, “Without realistic expectations of
what wearable eye trackers (and wearable technology in general) may deliver,
research funds and the careers of young researchers are potentially wasted.”35

Here, we o↵er an alternative to these extreme views—one that is neither as
carefree as Shamay-Tsoory & Mendelsohn’s nor as dire as Hessels et al.’s. We
believe that head-mounted eye tracking can be challenging, but the challenges
are not so prohibitive to outweigh the benefits of gathering naturalistic data.
We begin the paper by describing the characteristics of head-mounted eye track-40

ing and discuss the research pay-o↵: Why is it important to measure eye gaze
in mobile observers? Next, we review the challenges and solutions of employ-
ing head-mounted eye tracking methods. Because head-mounted eye tracking
systems vary in quality, can be applied in a wide range of contexts, and can be
analyzed in myriad ways, we argue that researchers’ decisions about how to im-45

plement the method determine the ease of use and quality of data. Accordingly,
we argue that general claims about whether head-mounted eye tracking is (or
is not) cost e↵ective, easy to apply, and reliable should be avoided. Rather, we
describe how each issue depends on researchers’ decisions about how to apply
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the method to their question of interest.50

2. What is head-mounted eye tracking?

Comparing newer head-mounted eye trackers (HMETs) to the older and
more ubiquitous screen eye trackers (SETs) helps to make it clear what limita-
tions of SETs are solved by using HMETs. As Figure 1A shows, a SET consists
of a monitor for displaying photographic or video stimuli. Beneath the monitor,55

a specialized set of high-speed cameras are positioned to record the eyes of an
observer seated nearby. Because the cameras are fixed in place, the observer’s
head must remain within a small trackable areas in view of the eye tracking
cameras. This precludes the observer from moving (other than small shifts in
body posture). The fixed cameras and fixed observer mean that eye gaze can60

be tracked in a small region above the eye tracking cameras. Although this is
often a computer monitor, some fixed eye tracking systems allow the monitor to
be removed so that a live stimulus can be presented in that space. Either way,
SET systems cannot measure how an observer looks in all di↵erent directions
with respect to the body; once the head turns to the side, the observer’s eyes65

are no longer in view to track.
A HMET solves this problem by placing the cameras on the participant’s

head (Figure 1B). An eye camera on the headgear moves with every head turn,
providing a constant image of the observer’s eye to detect the position of the
pupil and/or corneal reflection. Likewise, an outward-facing field of view camera70

(FOV camera) fixed to the observer’s head captures a video of what is in view
at every moment. A calibration process, in which the observer is instructed to
fixate a set of known points, creates a model of how pupil/corneal reflection
positions in the eye camera correspond to gaze position in the FOV camera.
The right panel of Figure 1B shows an infant participant’s calibration—toys75

are presented in di↵erent windows in a grid to elicit looks across the visual
field. The resulting data are horizontal and vertical coordinates of the estimated
point of gaze within the head-centered FOV camera. Typically, HMET systems
superimpose a gaze cursor on the FOV video to visualize where the observer
looks as the contents of the FOV shift from moment to moment due to head and80

body movements. This gaze overlay video can be used in subsequent coding, as
we will discuss below.

3. Why use head-mounted eye tracking?

Visual attention when passively viewing visual stimuli on a computer screen
di↵ers from visual attention in the real world (Foulsham et al., 2011; Tatler85

et al., 2013; Franchak, 2020b). Many free viewing paradigms using SETs gather
eye movement data in experimental tasks that lack goals and actions. As a
result, the findings based on screen-viewing paradigms may not be generalized
and replicated in more naturalistic contexts. This is because the most important
role of vision and visual attention in the real world is to guide everyday actions90
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in the complex and dynamic visual world to achieve behavioral goals. Without
up-to-date information about the state of the world, it is di�cult for people
to know what the consequences of an action are likely to be (Hayhoe, 2000).
HMETs provide a window into the moment-to-moment visual information per-
ceived by the wearers when they engage in everyday activities (Pelz et al., 2001).95

When a wearer moves relative to the environment, egocentric vision captured
by a HMET is a product of the simultaneous movements of eye, head, hand,
and body, which serves two important roles. First, the visual information gath-
ered about the world is used to support visually guided behavior. Second, the
visual information in egocentric vision is used to estimate the change in viewer100

location in the environment. Because HMET reveals how visual information is
collected to serve ongoing actions, it is tightly linked to behavioral goals and
internal processes that those behavioral goals serve. Those intrinsic properties
in egocentric vision have driven increasing interests on using egocentric vision
in behavioral science and computer vision research.105

While SETs are exclusively used in the screen viewing setting, HMETs can
be used in much broader contexts with the wearer moving in the environment.
Further, SETs track where a participant looks on a 2D screen while HMETs
track where a participant looks in a 3D world. For HMET used in free moving
contexts, because the head is the upper portion of the body and the eyes are110

on the front of the head, gaze direction is a product of eye movement in the
head-centered coordinate system, head orientation and body pose. Two out of
the three body movements, head orientation and body pose, are captured by
egocentric vision itself. Further, because the precise timing relations between
eye and head are also tightly coordinated (Pelz et al., 2001; Bambach et al.,115

2016b), the wearer’s gaze is at the center of the egocentric view in a majority
of the time. Taken together, this center bias in egocentric vision allows us to
approximate visual attention even without explicit eye tracking as it is reason-
able to assume that the center of egocentric view often reveals gaze direction
of a wearer (Bambach et al., 2016b; Franchak et al., under review). Thus, this120

eye-head alignment makes it possible to track gaze direction from the egocentric
view captured by a head-mounted FOV camera. The addition of the eye camera
to track eye position, and a calibration process to map eye position to gaze di-
rection in the FOV, lend further precision to measuring egocentric vision. In the
following, we discuss two critical characteristics of head-mounted eye tracking125

research: precision in space and time, and ecological validity.

3.1. “In-the-moment” precision in space and time

Humans sample visual information from the outside world. Egocentric vision
captures in-the-moment visual context when an observer uses a combination of
eye, head, and body movements to shift attention and sample necessary infor-130

mation from the environment to support ongoing actions. Eye, head, and body
movements are precisely coordinated to orient the visual system in space to
collect task-relevant information (Land, 2004; McGee et al., in press). Because
the eye tracking cameras move with the observer, HMETs capture the culmina-
tion of eye-in-head-in-body movements to orient the visual system. Moreover,135
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head-mounted eye tracking provides “just-in-time” temporal accuracy. People
don’t need to store all the information in the surrounding environment but in-
stead a ‘just-in-time’ strategy is employed to acquire the specific information
they need for movement programming exactly at the point it is required in the
ongoing task (Ballard et al., 1995; Hayhoe et al., 2003). Noisy sensory data and140

short-term memory representations point to the need for the actor to update
the information about the surrounding world and take that into the decision of
where to look and what action to take as a consequence. Given limited cogni-
tive resources and the fact that the information held in the working memory
decays over time, the actor needs to carefully decide on where to shift attention145

to update certain parts of the visual environment to serve ongoing goals and
activities. Because those behaviors serve sensorimotor and cognitive processes,
moment-to-moment gaze data from HMET reveal how those processes unfold
in real time.

3.2. Ecological validity150

Franchak (2020b) identified three aspects of ecological validity provided by
HMET research that are of theoretical consequence. Improving all three aspects
of ecological validity can help researchers create measurements that better rep-
resent the construct of interest. First, HMET have the potential to present
scenes with visual features that more closely approximate the statistics of ev-155

eryday scenes. Screen-based stimuli lack the spatial regularities and feature
distributions that are characteristic of what people see in day to day life. For
example, photographs—even those of outdoor scenes—are biased by photogra-
phers to place a subject centered in view, resulting in features clustered towards
the center (Tseng et al., 2009). However, recordings of participants navigating a160

variety of naturalistic environments find that visual features tend to be clustered
towards the top of the view (Schumann et al., 2008), which could change how
eye movements are used to explore the scene. Second, HMET allows for interac-
tivity in a way that SET does not. Objects on screens cannot be picked up, and
people in photographs cannot be conversational partners. Since observers look165

towards task-relevant locations (Ballard et al., 1995; Hayhoe et al., 2003; Tatler
et al., 2013), the lack of interactive tasks will change how observers distribute
visual attention. For example, Foulsham et al. (2011) found that observers in a
SET task who watched videos from the perspective of a person walking along a
campus path looked at the faces of other pedestrians more frequently compared170

to observers in a HMET who were actually walking on the path. In other words,
the possibility of interaction in the real-world task decreased the likelihood that
adults would look at strangers’ faces. Third, the ability to track eye movements
in a mobile observer means that HMET better captures how embodied factors
influence eye gaze. Orienting the eyes to look depends on how the head and175

body are positioned; studying eye movements in a seated observer who can only
gaze at a computer monitor removes how the head and body contribute to vi-
sual exploration (Bambach et al., 2016b). For example, infants crawling on the
ground have a more restricted view of their surroundings (Kretch et al., 2014),
which limits their ability to gaze at faces (Franchak et al., 2018) or distant180
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objects (Luo & Franchak, 2020) compared with when they are in an upright
position.

The wearable headgear paired with smartphones or other lightweight devices
to record the eye and FOV videos mean that HMETs can be used in applica-
tions that SETs’ lack of mobility would not allow. Taking HMETs out of the lab185

and into the field means that HMETs contribute to the recent push for research
that prioritizes ecological validity (Dahl, 2017; Pérez-Edgar et al., 2020). But
ecological validity is not merely an issue of what type of eye tracker is used and
whether the study was conducted in the lab or in the field. For example, using
a HMET to study children’s scanning of illusory contour shapes presented on190

a computer monitor is certainly not a “real-world” study (Nayar et al., 2015).
We agree with Hessels et al. (2020), who suggested that researchers identify
which aspects of the real world have theoretical impact in the research question
(although we disagree with their claim that such reasons are often lacking). If
there is no theoretical benefit to testing behavior in a more complex setting,195

experimental control should be prioritized. However, the ultimate goal of psy-
chological research is to discover generalizable theories of human psychology
that work not only in the lab but also in the real world. Toward this goal, we
believe that HMET allows researchers to improve ecological validity on several
dimensions that are important for understanding perception, motor control, and200

social interaction (for extended discussions, see Franchak, 2020a,b).

4. Two case studies of using head-mounted eye tracking in develop-
mental science

In developmental science, researchers are taking advantage of novel head-
mounted eye tracking methods to analyze visual experiences of early life (Smith205

et al., 2018; Bambach et al., 2018). This work has already resulted in important
findings on how young children actively explore the world to create experiences
and collect visual data to facilitate early learning of words and visual objects
(Suanda et al., 2018). Here we provide an overview of two studies to illustrate
that new findings gathered from HMETs have significant theoretical implica-210

tions and practical utilities that justify the challenges faced in using the new
technology.

4.1. Visual object learning and word learning

Recently, evidence derived from HMETs in child-parent free-flowing play
provide a new perspective of early word learning. Yu & Smith (2012) showed215

that at the moment when a parent says a novel word, it is often the case that
children have one object in view. Why? Because children have short arms.
When children hold objects, the objects are close. Conveniently, parents also
tend to name objects that children hold. Thus, the problem of determining the
referent of a novel word is not solved by constraints in the head; it is solved220

by embodied constraints. The idea that active toddlers use their own actions
to determine their dynamic visual experiences is very di↵erent from previous
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theoretical views and video data captured from third-person cameras. HMETs
capture children’s visual experiences as a function of their body movements and
actions, which is key to understanding early cognitive development.225

Studying visual experiences from the view of the infant provides a unique
window on early object recognition. In human visual science and in computer
vision, object recognition is viewed as a hard problem. This inherent challenge is
well known because the same 3D object can be projected as di↵erent 2D images
onto the retina depending on how the object is posed and positioned, how the230

object is lit, and how it is seen against di↵erent visual backgrounds—all of all
of which can vary moment to moment in the observer’s egocentric view (Pinto
et al., 2008). A second challenge is that objects belonging to the same object
category (e.g. di↵erent types of mug for the “mug” category) may also vary
in their appearance. Despite these challenges, toddlers can recognize roughly235

300 object categories, and they can generalize a newly learned label to visual
instances that they have never seen before. How do young children solve this
problem?

Despite decades of research on this topic that have used experimental psy-
chology approaches to examining how young children process well-controlled240

visual stimuli created by experimenters, recent studies built on the advances
in egocentric vision and machine learning reveal that the answer may lie in
measuring the visual input that young children actually perceive in everyday
learning contexts. In many everyday contexts such as toy play, toddlers don’t
passively perceive visual input created by others. Instead, they actively use245

manual actions to create many di↵erent views of the same object (Soska et al.,
2010). To test the hypothesis that size and similarity properties of the visual
data created by toddler facilitate visual object recognition, computational sim-
ulation studies were conducted and the results showed that the same model
trained based on the child data outperformed the model trained based on the250

parent data (Bambach et al., 2016a, 2018). Further, a follow-up study showed
that infants who generated more variable visual object images through active
manipulation are more advanced learners of early vocabulary in the real world
(Slone et al., 2019). Thus, active viewing creates high-quality statistical data
for visual object recognition. Taken together, those results suggest that the rele-255

vant data for early learning are not the statistics of the physical and social world
but only the samples that emerge within the learners’ own experiences, which
are interactive and embodied. The sampling process is implemented through
infants’ actions that create their own data with unique properties and distribu-
tions (Smith et al., 2018). Critically, this new frontier in developmental science260

built on egocentric vision highlights the importance of examining the learning
input that make contact with the child’s sensory system (Yu et al., 2009).

4.2. Joint attention in parent-child social interaction

Our second case study uses the example of infant joint attention (JA), which
is a widely studied topic in early social development. Infants’ ability to follow265

the gaze of a social partner has a prominent place in the joint attention liter-
ature (Moore et al., 2014). Many experimental studies have been designed to
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elicit and measure how well infants follow gaze to establish joint attention with
their social partners. The evidence for gaze following in experimental contexts
is unambiguous: Infants are able to follow a social partner’s gaze direction to270

attend to a target object gazed by the partner. Usually, such studies are con-
ducted in discrete experimental trials with clear and repeated signals from the
partner to enhance the temporal availability of gaze signals. The assumption is
that infants’ abilities to follow the looking behavior of others—which are reliably
demonstrated in the laboratory—scale up to real-world contexts.275

Studies using dual HMETs (one worn by the infant and one worn by the
parent), paired with synchronized frame-by-frame coding of manual actions,
have objectively measured joint attention and the sensory-motor behaviors that
underlie it (Yu & Smith, 2013, 2017b,a). By tracking the momentary gaze
behavior and hand actions of each participant, we precisely determined just how280

often they looked at the same object at the same time, the visual behaviors that
preceded joint attention, and manual behaviors that preceded and co-occurred
with joint attention. We found that infants rarely looked at the parent’s face
during toy play and therefore gaze following was rarely employed by infants to
establish joint attention bouts with their parents. Instead, both toddlers and285

parents lead and follow the other to create joint attention bouts. In other words,
each member of the dyad sends behavioral signals to their partner and adjusts
their own looking behavior in response to their partner’s behavior. Further, both
child-led and parent-led JA bouts may be created through the gaze following
and hand following pathways. However, the frequency of these pathways di↵er290

as a function of who is leading and who is following, with hand following being
much more likely by the toddler than the parent overall. In addition, there are
developmental changes in this multi-pathway system evidenced as variations in
strength among multiple routes (Yu & Smith, 2017b). A dual head-mounted
eye tracking study of joint attention in freely moving infants and caregivers295

found high rates of JA despite infrequent looks by the infant to parents’ faces
(Franchak et al., 2018), providing converging evidence in a di↵erent task and
motor context.

A followup study used HMETs to investigate the e↵ects of children’s prelin-
gual hearing loss on how they achieve coordinated attention with their hearing300

parents during free-flowing object play (Chen et al., 2020). They found that 24-
to 37-month-olds with hearing loss had similar overall gaze patterns (e.g., gaze
length and proportion of face looking) as their normal hearing peers. In addition,
children’s hearing status did not a↵ect how likely parents and children attended
to the same object at the same time during play. However, when following305

parents’ attention, children with hearing loss used both parents’ gaze directions
and hand actions as cues, whereas children with normal hearing mainly relied
on parents’ hand actions. The diversity of pathways leading to coordinated
attention suggests the flexibility and robustness of developing systems in using
multiple pathways to achieve the same functional end. These recent studies on310

parent-child social interaction suggest that coordinated visual attention between
parents and toddlers is primarily a sensory-motor behavior. Skill in achieving
coordinated visual attention in social settings—like skills in other sensory-motor
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domains—emerges from multiple pathways to the same functional outcome (Yu
& Smith, 2017b).315

In additional to this theoretical implication, those findings also provide in-
sights on interventions for atypically-developing populations. For example, pre-
vious eye tracking studies have shown that children with autism spectrum disor-
der (ASD) di↵er from that of typically developing (TD) children, with reduced
face looking, reduced eye contact, and reduced joint attention. As such, these320

behaviors have become primary targets of research and intervention for children
with ASD. However, using dual head-mounted eye tracking, a recent study ex-
amined these behaviors of toddlers with and without ASD during free-flowing
toy play with a parent (Yurkovic et al., 2021). Contrary to expectations based
on studies that use explicitly-cued attention prompts and screen-based stimuli,325

researchers found that children with ASD rarely looked at the parents’ faces
during toy play (though parents frequently look to their children’s faces), and
that mutual eye contact was an extremely rare phenomenon. Nevertheless, both
ASD group and the age-matched TD group achieved similarly high levels of joint
attention, suggesting that typical levels of joint attention in ASD arise during330

naturalistic play and are not primarily dependent on attention to faces and eyes.

5. Challenges and solutions for studying real-world eye gaze

In the preceding sections, we demonstrated how head-mounted eye tracking
can provide new insights about important processes in developmental psychol-
ogy by capturing in-the-moment data with high ecological validity. Now, we335

turn back to the issue of whether “...portable eye-tracking systems o↵er a cost-
e↵ective, easy to apply, and reliable measure of eye gaze and saccades in an
ecological environment” (Shamay-Tsoory & Mendelsohn, 2019). As we discuss
the key challenges in gathering high-quality HMET data, the key takeaway
is that the research question, population, and procedures dictate how cost-340

e↵ective, how easy to apply, and how reliable measurements will be with any
type of eye tracker (SET or HMET). By identifying the degrees of freedom in
how researchers might apply eye tracking methods that a↵ect data quality, and
by o↵ering strategies for improving data quality, we hope that researchers can
better decide whether HMET might be appropriate for their particular use case.345

5.1. Is head-mounted eye tracking an accurate and precise way to measure eye

gaze?

It depends on the application. Although SETs o↵er superior accuracy and
reliability to track gaze on a 2D screen, HMETs can be su�ciently accurate
and precise to track gaze in a 3D environment to answer a variety of questions.350

The needed accuracy and precision depend on the research question. At one
extreme, researchers who study reading need to distinguish which letter in a
word an observer is looking at, so using a high resolution screen eye tracker
with the observer’s head fixed in a chin rest may be necessary to minimize er-
ror. In other situations, such as when targets are large and sparsely distributed355
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in the environment, eye gaze data with larger errors may be acceptable. Eye-
tracking accuracy refers to the size of the error between the true gaze location
(where the observer is really looking) and the estimated gaze location (Nyström
et al., 2013). Precision refers to the absence of noise in the eye tracking signal
that leads to spatial variability over successive samples. Figure 2 illustrates360

accuracy and precision by showing an example calibration stimulus (the true
location is the fingertip of the experimenter) surrounded by five estimated gaze
points that are both accurate and precise (A), precise but inaccurate (B), ac-
curate but imprecise (C), or both inaccurate and imprecise (D). Developmental
researchers must be vigilant using any type of eye tracker because infant and365

toddler compliance has the potential to a↵ect both aspects data quality.

5.1.1. Accuracy

Accuracy is measured by reporting the spatial error in degrees of visual an-
gle, with smaller errors indicating better accuracy. The dotted line in Figure
2D shows the spatial o↵set between one gaze point and the true location. It is370

important to separate the manufacturer-reported accuracy of a system versus
the accuracy of any single participant’s recording. The former value, what the
manufacturer lists in the specification sheet, expresses the ideal performance
of the system. Generally, the manufacturer-specified accuracy of SETs is bet-
ter (.02-0.5 degrees) compared with HMETs (0.5-2 degrees). In practice, the375

size of error for any single participant may exceed these ideal values. Many
factors a↵ect accuracy: how well the eye tracker detects the participant’s eyes,
how accurately the participant looked at the calibration points, and how much
movement interfered with the recording.

How does one determine accuracy? After calibration, most SET systems can380

be configured to run a validation procedure. Validation means eliciting gaze to
a set of targets on the screen and then measuring the spatial o↵set between each
point and the estimated point of gaze (as in Figure 2D). It is customary to report
this value in papers and to set an accuracy criterion for inclusion in the study.
This is particularly important in developmental studies, because comparisons385

across age could be confounded by di↵erences in eye tracking accuracy. Infants
may not gaze exactly at the location of a calibration target, leading to worse
accuracy (Frank et al., 2009; Wass et al., 2013). In a recent SET study of 6-
month-olds to 12-year-olds and adults, we found a modest decrease in error with
age of r = -.2 (Kadooka & Franchak, 2020). However, the di↵erence in accuracy390

between infants (M = 0.66o) and adults (M = 0.43o) was only 0.2o. Without
measuring and reporting the accuracy, age-related di↵erences in accuracy could
be a confound lurking within a developmental study.

Because HMETs are not tied to a screen interface that can present gaze
targets and automatically calculate the spatial error, users may need to get a395

bit more creative to determine the accuracy if the system they are using does
not provide a validation procedure. One method is to use a standard-sized
target to assess accuracy. Infant HMET studies often calibrate the eye tracker
by showing a board with small windows and eliciting looks to each window by
showing an attractive toy (Kretch et al., 2014; Franchak et al., 2018), as seen400
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in Figure 1. If the calibration board is presented at the same distance, it is
straightforward to calculate the visual angle of each window to use that as a
standard. For example, the windows in Figure 1 are approximately 4o wide. If
the estimated point of gaze falls within the window during a set of validation
check trials, the researcher can infer that the spatial error is within 2o (a version405

of this method was used in Franchak et al., 2011). Although this method does
not provide an absolute error value for each participant, it can help assure that
data collected are within an acceptable range.

With a bit more e↵ort, researchers can approximate the error with any
HMET system. By eliciting looks to validation targets, the resulting gaze over-410

lay video can be used to measure the o↵set between the gaze estimate and
target. Based on the field of view (in degrees) of the eye tracker camera and
the resolution (in pixels) of the video file, the number of pixels of spatial o↵set
between the target and the point of gaze can be converted to degrees of visual
angle. Figure 2D illustrates the spatial o↵set for one gaze point and shows how415

the pixel-to-degree ratio can be used to approximate error. Using this method,
we reported accuracy of 1.55o in infants and 0.85o in caregivers who both wore
eye trackers during a laboratory play session (Franchak et al., 2018). However,
because eye tracking field of view cameras often use wide-angle lenses that dis-
tort space, converting pixels to degrees is only an approximation. If more precise420

measures of error are needed, researchers can employ tools, such as the Matlab
Camera Calibration Toolbox or OpenCV libraries, that can measure and model
lens distortion and then map gaze data into an undistorted space (e.g., McGee
et al., in press; Tomasi et al., 2016).

Movement can make it more di�cult for eye tracking cameras to detect eye425

position. SET systems that allow for head movement (without a chin rest) can
have errors introduced as a participant moves in depth (Niehorster et al., 2018),
especially in infants who may wiggle from front to back. A unique threat to
HMET accuracy is headgear “slippage” (Niehorster et al., 2020). Once the eye
tracker is calibrated, estimates of gaze direction are based on the location of the430

pupil and corneal reflection in the eye camera view. Systematically changing
that location by moving the location of the headgear will introduce error. For
this reason, we recommend that researchers collect calibration and validation
data at the beginning and end of the session to ensure that accuracy has not
worsened due to headgear movement. In longer sessions, it may be advisable435

to include multiple, brief (30-s) calibration checks. If a deviation in accuracy
is detected, the researcher can often find the moment of slippage by scanning
through the eye camera video to find when it moved. If multiple sets of cal-
ibration data are collected over time, the session can be salvaged by using a
di↵erent calibration after the headgear moved.440

5.1.2. Precision

Sources of noise include di�culty in detecting the pupil or corneal reflection
from one sample to the next, which can result in the gaze estimate “jumping”
from place to place. Although noisy data can be accurate on average, noise in
eye tracking data makes it particularly challenging to understand the temporal445
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aspects of eye gaze (Wass et al., 2014; Nyström et al., 2013). A common practice
in eye tracking research is to parse eye movements into fixations (moments
during which the eyes remain stable on a target) and saccades (high velocity
shifts of eye position from one location to another). Since noisy data erroneously
indicate that the eye is moving when in fact it may be relatively stable, noise450

can lead to underestimating the lengths of fixations (e.g., a long fixation may be
interrupted by a jump in eye position that is incorrectly parsed as a saccade).
Poor data precision may also impact coding whether participants looked at one
area of interest or another (Wass et al., 2014).

Even in SET studies, infant data precision may be worse compared with older455

participants, since infants do not sit still and have eye features that may are
more di�cult to track (Wass et al., 2014). However, this may not always be the
case: Using Wass et al.’s precision metric to describe the sample-to-sample noise
in SET data, we failed to find a di↵erence across our sample of 6-month-olds to
12-year-olds and adults (Kadooka & Franchak, 2020). Little empirical work has460

characterized data reliability in head-mounted eye trackers. Niehorster et al.
(2018) found, unsurprisingly, that headgear slippage introduced noise from the
beginning to the end of a session. However, our strategy of collecting multiple
calibrations/validations would help mitigate this issue by recalibrating the eye
tracker after the headgear has moved.465

Some HMETs, such as the Positive Science system, require that the re-
searcher manually orients the eye camera to obtain the best possible image of
the participant’s eye. In our experience, this orienting step is crucial for en-
suring low-noise data. If the eye is large in the eye camera view, centered so
that it does not overlap the edge of the camera’s view, and brightly illuminated,470

the computer vision algorithms do well at detecting the pupil (Figure 3A-B).
Failure to adjust the camera to get a good eye image will result in noisy data,
because the algorithm struggles from one sample to the next to detect the pupil.
Figure 3C-D show poor eye camera images that will result in noisy data as the
detection algorithm struggles to detect the location of the pupil. In addition,475

periodically checking the eye camera image during a study can help ensure that
the quality standard is maintained throughout a session.

Without ensuring that the data are precise (or without ensuring that preci-
sion is consistent across participants/age groups/conditions), researchers should
be cautious about applying event-based metrics to eye tracking data. As we will480

discuss in the next section, many research questions do not rely on categoriz-
ing eye gaze data into events such as fixations and saccades. Researchers may
instead opt to report aggregate measures of looking behavior, such as the pro-
portion of eye gaze samples directed to one area of interest versus another, which
could be more robust to noise compared with claims about average fixation du-485

ration or fixation sequence. However, if those measures are of primary interest,
researchers should set inclusion criteria based on empirical measurements of eye
tracking precision. In the past we have informally excluded participants if the
eye image seemed poor and resulted in a noisy track; however, a more objective
option would be to calculate precision using Wass et al.’s precision metric (after490

converting scene camera pixels to degrees) and setting a threshold for what level
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of precision counts as usable data.

5.2. Is head-mounted eye tracking easy to apply?

Sometimes. HMETs can be easy to apply in some situations and popula-
tions, and di�cult to apply in others. In their critique, Hessels et al. (2020)495

wrote, “It is true that for some wearable eye trackers, it is easy to put one on
and start a measurement. But ‘easy to apply’ suggests that the wearable eye
tracker is easy to use for drawing conclusions on perception, cognition, and so
forth. We think that this is not the case because (a) clear theoretical reasons
for conducting wearable eye-tracking research are often lacking, (b) important500

concepts in eye-tracking research are often not or ill-defined, and (c) signal pro-
cessing and analysing where someone looked in the world is problematic.” For
us, as developmental researchers, this statement seems backwards. Placing eye-
tracking equipment on infants can sometimes be the biggest challenge in the
study. Because we have described techniques for placing the equipment (and505

keeping it) on infants elsewhere (Franchak et al., 2011; Franchak, 2017; Slone
et al., 2018), we do not to discuss that issue here. Earlier in this paper, we dis-
cussed the theoretical issues for conducting head-mounted eye tracking research
(criticism ‘a’). Here, we address the second and third criticisms about ease of
use (criticisms ‘b’ and ‘c’).510

5.2.1. Defining fixations and saccades

The “important concepts in eye-tracking research” that Hessels et al. re-
ferred to are categorizing eye gaze as fixations and saccades. Humans can
make a variety of eye movement types (Land & Tatler, 2009): Besides fixa-
tions and saccades (which we previously defined), the eyes can smoothly pursue515

moving targets and can counter-rotate to compensate for head movement (the
vestibular-ocular reflex). Moving objects and moving observers make it impossi-
ble for HMETs to automatically define fixations and saccades from the position
of the eyes within the head in a way that is commensurate with SET systems.
Assuming that the concept of a fixation is in fact well-defined and used consis-520

tently in screen-based eye tracking (Hessels et al., 2018, suggests it may not),
does the problem of defining fixations disadvantage HMET research?

In some instances, measuring fixations that can be directly compared to
SET work may be vital. Researchers who study eye movement control need to
categorize eye movement types, and researchers who study executive function525

may need to measure fixation durations as an index of attentional control (e.g.,
Wass & Smith, 2014). Yet, in many other use cases the concept of a fixation
is not critical. For characterizing joint attention and face looking as reviewed
in the previous section, it may be su�cient to simply measure how frequently
an infant looks at the caregiver’s face in a trial or a session (Franchak et al.,530

2018; Yu & Smith, 2013). To understand how frequently infants look at objects
when hearing an object name, measuring the proportion of frames in which
gaze lands on each of the available objects in view would be su�cient to answer
the research question. Even though infants may generate multiple fixations
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toward the same object, the number of fixations on the that object may not535

be the most meaningful measure for building a word-object mapping. Likewise,
the definition of a fixation is not important for determining how frequently
infants and children look at obstacles before traversing them (Franchak et al.,
2011; Kretch & Adolph, 2017; Franchak & Adolph, 2010). In all of these cases,
researchers may place a minimum duration of what counts as looking (e.g, 2 or 3540

successive video frames at 30 Hz) to reduce the odds of capturing incidental gaze
(such as when the eyes momentarily fall on a target during a saccade from one
location to another). Regardless, in all of these examples (and many others),
the research goal is to measure what the observer saw to draw conclusions about
cognitive, motor, or social development, not to detect whether the eye was in545

one state versus another. With no or minimal head movement (by using a chin
rest), it is certainly easier to detect fixations and saccades using SET during
screen viewing. However, because the eyes and the head naturally move together
to serve attention switching in a 3D world, measuring eye gaze amidst head and
body movement enhances, rather than diminishes, our understanding of how550

infants and children visually explore in naturalistic contexts.

5.2.2. Signal processing and analysis

Another criticism that Hessels et al. levy is that HMETs make it di�cult to
interpret exactly where people looked, since the eye tracker measures the point
of gaze within a head-centered field of view camera (in two dimensions), not555

where gaze falls in the three-dimensional world. They note that the problem of
determining what people looked at becomes more di�cult as the environment
becomes more complex. Whereas it may be easier in a controlled environment to
decide that an infant is looking at one of three brightly colored objects (e.g, Yu
& Smith, 2013), it is more di�cult to categorize what object a person is looking560

at as they walk along a city street (’t Hart & Einhauser, 2012) or college campus
(Foulsham et al., 2011; McGee et al., in press) when there are many potential
targets of interest of varying shapes, sizes, and distances. This is certainly true,
however, it is not a problem unique to HMET research, but is a result of the
complexity of real-world visual scenes. The trend in SET research has been to565

move towards measuring how people view so-called “natural” images or videos
that contain densely clustered targets that are more like everyday scenes. Even
with a highly accurate and highly precise SET, there is always some spatial error
and noise. As the distance between areas of interest (AOIs) decreases, there will
be a point at which eye tracker error and/or noise will result in mis-classification570

of looking. This is true for a photograph or video on an SET or a real-world scene
viewed with a HMET. Figure 4A shows an example of rectangular AOIs drawn
to classify looks to the experimenter’s eyes versus mouth, with an example gaze
point falling in the mouth region. Error bars to the right of the gaze point show
how vertical errors of 6o versus 4o versus 2o would lead to varying confidence in575

whether that gaze estimate was truly a look to the mouth versus the eyes.
If researchers are taking an AOI approach (which, as we will discuss below,

is not the only option for analyzing data), there are di↵erent options for how to
implement AOI analyses. The first is to draw areas of interest on the stimulus
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or gaze overlay video, and calculate whether the point of gaze lands within the580

boundaries. The example image in Figure 4A shows rectangular AOIs drawn on
a video frame. Most SET systems are bundled with analysis software that allow
researchers to draw areas of interest on the stimulus (typically ovals or rect-
angles, but sometimes free-form contours). Although this can be done quickly
if the stimulus is a photograph, it can be time-consuming to do so for every585

frame of a video stimulus as targets move within the image. We have made free
software available to allow researchers to make similar annotations based on
the gaze recording videos from HMETs (Franchak, 2019), but this is even more
time-consuming for HMET studies because it must be done for each individual
participant. Because eye gaze estimates can be noisy and will always contain590

some amount of error, researchers often choose to make AOIs larger than the
target so that “borderline” looks get counted (as in Figure 4A). Regardless of
the type of eye tracking system used, researchers should report the size of the
AOIs and the degree to which they may be padded, since these decisions can
make the analyses count AOI looks more liberally versus more conservatively.595

For more details about reporting results from AOI analyses, see Oakes (2010).
A second way to score AOI looking is through manual coding of the gaze

overlay video. A coder goes through the frames of a video at reduced speed and
annotates a look to a particular target when the gaze cursor lands on the tar-
get. For example, a definition of face looking could be “count a face look as any600

time the gaze crosshair lands on any skin region of a face (excluding the hair,
neck, and ears) for at least 2 successive video frames”. Because such coding is
performed on the gaze overlay video, it must be repeated for every participant’s
session, which can be time-consuming. However, for HMET studies either type
of analysis (drawing AOIs versus coding looks) would need to be performed for605

every session, and making a judgment about which of a set of potential targets
the gaze crosshair falls on is often quicker compared to drawing multiple AOIs
on each video frame. In addition, a well-trained coder can visually segment the
borders of an object that is not circular or rectangular with ease, but drawing a
precise AOI around a complex object can be laborious. Padding to account for610

error in eye gaze estimates can be accomplished by creating a gaze cursor that
visualizes exactly how close to a target the gaze cursor needs to be to count as a
look. Figure 4B shows a gaze cursor with 2o (solid circle) and 4o (dotted circle)
radii. Defining a look based on the circle overlapping any code-able region of a
target accomplishes the goal of padding, and does so more precisely compared615

with a rectangular or circular AOI that inconsistently increases the size of the
target. As with any type of behavioral coding, computerized coding software
such as Datavyu (www.datavyu.org) or ELAN (https://archive.mpi.nl/tla/elan)
can make the process more e�cient. HMET manufacturers may o↵er special-
ized annotation software as part of the system (sometimes at an additional cost).620

Some researchers have shared open-source coding software specific to eye track-
ing analyses (Benjamins et al., 2018). Finally, reliability coding can help ensure
that codes are accurate and reproducible, and blinding coders to experimental
conditions can reduce bias.

Regardless of the method, AOI analyses should be designed with the ex-625
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pected accuracy/precision in mind. Pilot testing with the HMET system can
help researchers determine what level of accuracy and precision to expect from
their population. Recording videos ahead of time from the HMET system in
the testing environment with objects of interest allows researchers to see how
objects’ size, distance, and proximity to other objects makes them appear in630

the FOV camera image. Note that a participant does not even need to wear
the eye tracker to gain these insights—a live view of the FOV camera in the
testing environment can let the experimenter move targets in di↵erent locations
to see the visual consequences from the participant’s point of view. In situations
where the experimenter can control the size and locations of objects, making635

objects large in the field of view (either by increasing the size or decreasing the
distance of objects) and spacing them far apart can make later coding easier. Of
course, this may not be possible in applications that seek to test participants in
completely unconstrained environments. In those situations, coding pilot data
can help researchers determine which objects can be reliably discriminated. For640

example, coding looks to the eyes versus mouth may be reliable if the face is
always close to the observer (making the target regions large) and if the data
collected are su�ciently accurate and precise. Coding eyes versus mouth looks
would be feasible in the example in Figure 4A when the error is 2o but not 6o;
however, if the experimenter moves farther away from the participant and their645

face becomes visually smaller, coding eyes versus mouth might not be reliable
even with 2o accuracy. Pilot testing and attempting to code the desired regions
can quickly make it apparent whether such coding can be done reliably. Re-
searchers may need to settle on more basic coding schemes (e.g., coding looks
to faces rather than looks to eyes versus mouth) depending on the parameters650

of their testing environment and data quality.

5.3. Is head-mounted eye tracking cost e↵ective?

Maybe! We hope that theme by now is clear—it depends on how method is
applied. Hessels et al.’s concern is that even though the price tag to acquire a
HMET system might be cost e↵ective, the labor of manual coding done by sta↵655

researchers could be a hidden cost. As we will review in this section, researchers
have a lot of options available to analyze HMET data. Some options are more
time-consuming than others. Manual coding of any sort of data can be slow, but
this is already a common challenge for developmental psychologists. Transcrib-
ing utterances or counting every footstep a baby takes time to do accurately and660

reliably. For eye movement data—in which eye position might move 2-3 times
per second—coding every single place a person looks for a few minutes can be
a large undertaking. Furthermore, learning how to develop codes, use coding
software, and implement quality control procedures (e.g., reliability coding) is
an investment for a lab that is not experienced in behavioral coding.665

First of all, researchers should ask whether AOI coding is necessary to answer
the research question. For some applications, it may be su�cient to describe
the pattern of eye movements based on the eye gaze coordinates without scoring
what exact things were looked at. Some researchers used HMETs to record eye
movements in adults walking in outdoor environments to describe the horizontal670
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versus vertical distribution of eye-in-head movements (’t Hart & Einhauser,
2012; Foulsham et al., 2011; Tomasi et al., 2016). The horizontal spread of eye
movements depends on the task that observers are performing—spread increases
to visually explore around the body when searching for targets compared to
simply walking along a path (McGee et al., in press). Bambach et al. (2013) used675

eye position data to show that both infants and adults tend to keep their eyes
centered within the head during a play session, showing that head movements
are frequently used to shift gaze between targets. In all of these examples, the
horizontal and vertical timeseries of eye position within the head-centered field
of view were su�cient to answer questions without the need for AOIs or manual680

coding of the gaze overlay video.
If AOI analyses are required, researchers should determine which targets

need to be coded and how frequently they need to be coded to answer the ques-
tion. Although it may sound attractive to have a full sequence of every object
that was every gazed at, rarely is this necessary. Instead, researchers should only685

code what they need to code based on their hypotheses. For example, in two
investigations we reported the proportion of time that infants looked at care-
givers’ faces was 4% and 11% (Franchak et al., 2018; Yu & Smith, 2013). Thus,
if the main variable of interest is face looking, coders can e�ciently go through
much of the session and only annotate the relatively rare moments that infants690

looked at caregivers’ faces. In a study that asked whether participants fixated
obstacles in advance of traversing them, frame-by-frame coding of the entire
video was avoided by first reducing the data by identifying all of the obstacle
events (Franchak & Adolph, 2010). After finding the times when participants
stepped up, down, and over obstacles, a second pass of coding identified whether695

the obstacle was looked at in the preceding 5 s. Depending on the length of
the recording, it may not be necessary to code every frame. Jayaraman et al.
(2015) recorded infants’ egocentric perspective using head-mounted cameras to
determine how often faces and hands were in view. Rather than coding every
video frame of a corpus exceeding 100 hours, they reduced the data to code700

video frames every 5 s to increase e�ciency. By coding only what is necessary,
researchers can minimize the time needed to answer their question to make
HMET research more cost e↵ective.

Finally, there have been promising developments over the past decade to
show that manual coding might eventually be replaced by automatic computer705

vision coding for some applications. The emerging field of egocentric computer
vision aims to automatically understand the images and video captured from
first-person cameras. Besides the scientific applications mentioned above, wear-
able cameras will likely create a variety of consumer applications, especially as
low-cost devices (like Google Glass, Narrative Clip, etc.) become mainstream.710

For instance, first-person cameras are now worn by police o�cers to document
their interactions with the public, have been tested as a means for helping peo-
ple with dementia record and recall forgotten memories, and can potentially
assist people with visual impairments to navigate physical and social situations
through real-time feedback provided by computer vision analysis. All of these715

applications collect and record such vast amounts of image data that computer
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vision is needed to automatically organize and analyze images, potentially in
real time. Researchers have explored egocentric vision for activity and object
recognition, temporal segmentation, scene understanding, interaction analysis,
hand detection, gaze estimation, gaze analysis, visual saliency, social saliency,720

and motion capture. Many of those algorithms—including pre-trained deep
learning models—are open source software that are free for academic research
and can be used in an o↵-the-shelf way. All this make it feasible for automatic
annotation of attended objects, faces and hands from FOV videos. For example,
we developed a computer vision annotation algorithm to automatically detect725

and identify infants’ versus parents’ hands from HMET videos (Bambach et al.,
2014, 2015). Others have used o↵-the-shelf algorithms, such as the OpenPose
library to recognize hands and faces, and successfully replicated findings that
were conducted by manual coding (Long et al., 2021). We have also successfully
used YOLO and Resnet to automatically detect visual objects in the FOV cam-730

era view (Bambach et al., 2018). Those computational tools not only obviate
the time needed for manual coding, but also provide more objective and precise
measures of visual information in egocentric vision compared with human cod-
ing. As the developmental research field moves toward “big data” approaches,
those computer vision tools become an indispensable component of a whole735

system of using HMET in the real world.

5.4. Summary of recommendations

Head-mounted eye tracking research is challenging, but not so prohibitively
di�cult that researchers should avoid applying it. Sometimes, di�cult things
are worth doing. Researchers have always been at the front end of paving new740

ways to advance science. Going beyond the screen, HMET has allowed us to
answer new questions that would be impossible to address using SETs or any
other extant method. Moreover, there are solutions available to mitigate many
of the di�culties faced by using HMET with infant and child populations. We
end the paper with a summary of our recommendations of best practices, with745

the hope that researchers can use these guidelines to decide if and how to apply
HMET to their own research questions.

1. Start with a clearly defined research question. As we emphasized throughout
this chapter, the demands on data quality, signal processing, manual coding, etc.
all stem from the particular research question. There is no need for researchers750

to expend resources to recruit additional subjects to replace those with good
enough (but not stellar) data quality, nor to engage in laborious data coding if
those improvements will not a↵ect the outcome of the study. Likewise, detail-
ing the needs of the research question might rule out HMET altogether. For
example, a study that needed to identify which letter of di↵erent words on a755

billboard were fixated by an observer in a crowded train station might not be
feasible given the current limits of HMET.

2. Assess which aspects of ecological validity matter for measuring the constructs

of interest. Set up the study to prioritize realistic visual features, interactivity,

18



and/or embodiment as needed, but control other aspects of the study to simplify760

later coding and analysis. If a moving observer is not critical to the research
question, having the observer sit in place can help constrain the geometry of
the scene to facilitate AOI coding and can reduce headgear slippage. Explicitly
reporting which aspects of ecological validity are central to the question can
help other researchers decide whether those need to be accounted for in related765

work.

3. Decide prospectively what aspects of gaze behavior need to be measured. Is
area of interest coding necessary to answer the research question? Can the ques-
tion be asked with a simpler coding scheme or by using raw gaze coordinates?
Do fixations need to be defined, or would aggregate measures of looking time be770

su�cient? Each of these decisions place di↵erent demands on the data quality
required and the amount of labor needed to analyze the data. Considering these
options in advance can help the researcher plan a more direct route to answering
the research question.

4. Measure the accuracy and precision of eye gaze data. Reporting the accuracy775

and precision from validation checks is a best practice in eye tracking research
(Oakes, 2010; Wass et al., 2014). This allows the researcher, reviewers, and
readers to determine whether the data are of su�cient quality for event detection
and/or AOI coding. Ensuring that data are of comparable quality between
di↵erent subject groups/conditions can rule out a potentially major confound.780

Developmental researchers studying infants and children should pilot test to
estimate the accuracy and precision they can expect with di↵erent age groups
using the eye tracking system, as it will rarely approach the levels listed in
the manufacturer’s specifications. Matching participants or setting inclusion
criteria based on quality metrics may be necessary. Finally, researchers can use785

built-in software, rule of thumb metrics, or convert spatial o↵sets into degrees
using camera parameters to accomplish these goals with any type of eye tracking
system.

5. Plan AOI coding with respect to eye tracking data quality. Setting up the
testing environment and measuring the degrees of visual angle subtended by790

di↵erent targets at their expected locations/distances can reveal what level of
eye tracking accuracy is needed to confidently score looks to di↵erent AOIs.
Researchers should report how they defined AOIs (e.g., drawing regions over an
image, manual coding based on the gaze cursor, etc.), whether and how they
were padded, and, if in a controlled situation, the size and location of AOIs.795

Knowing that AOIs were large and spread apart relative to the eye tracking
data precision will increase the reader’s confidence in the results.

6. Prioritize e�cient rather than exhaustive data coding. It is rarely necessary
to code every gaze event to every possible location in the testing environment to
answer the question of interest. Coding only what is necessary for the hypoth-800

esized result saves time. Using computerized coding software can make coding
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more e�cient, and allows researchers to easily return to a data source to exe-
cute additional coding in the future, if warranted. For example, if the research
question only requires coding face-looking events, a follow-up analysis could go
back to those events to categorize them as looks to eye versus mouth regions805

(assuming the data are su�ciently precise). Exploring options for computer
vision analyses can facilitate automatic data coding, particularly for categories
that have open source, o↵-the-shelf algorithms available to apply.
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A. Screen eye tracker (SET)

B. Head-mounted eye tracker (HMET) and gaze overlay video

2º 4º 8º

FOV
Camera

Eye
Camera

Figure 1: A) Infant viewing a video stimulus on a screen eye tracker (SET) while seated
in a high chair. B) Left image shows an experimenter placing a head-mounted eye tracker
(HMET) on an infant participant; arrows indicate the location of the inward-facing eye camera
and the outward-facing field of view (FOV) camera. Right image shows the gaze overlay from
a participant during calibration. The FOV camera records the infants’ head-centered view,
and a circular gaze cursor is superimposed on the video to show the infant looking at the
experimenter presenting a toy in a window. Concentric circles around the point of gaze show
di↵erent error radii in degrees.
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A. Accurate and precise B. Inaccurate but precise

D. Inaccurate and imprecise

Spatial offset, 34 pixels = 5.36º 

FOV camera width, 640 pixels = 101º

C. Accurate but imprecise

Figure 2: Example validation stimulus from a HMET FOV camera showing 5 gaze estimates
(black and white circles) that should be directed to the fingertip of the experimenter. The
four panels illustrate: (A) data that are accurate and precise, (B) data that are inaccurate but
precise, (C) data that accurate but imprecise, and (D) data that are inaccurate and imprecise.
The graphics below (D) show how the field of view in degrees of the FOV camera can be used
to approximately convert a spatial o↵set, measured in pixels, into degrees of visual angle.
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B. Poor eye images result in a noisy track

A. Good eye images result in a precise track

Figure 3: A) and B) show high quality eye images with the eye large and well-centered in
view, with bright illumination that makes the pupil stand out from the image. Such images
make it easy for a computer vision algorithm to detect the pupil, decreasing the noise in the
eye gaze estimate. C) and D) show eye images with the camera too far from the eye, centered
poorly, and lacking good illumination. Noise will result from the pupil going out of view, as
well as detection problems resulting from the low-contrast of the pupil compared with the rest
of the image.
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2º
4º

6º

A. Drawing areas of interest

B. Using gaze cursor to code looks

Figure 4: A) Areas of interest (AOIs) drawn on a HMET gaze overlay video frame. White
rectangles show the boundaries for scoring a look to three objects or to the experimenter’s
eyes and mouth. Two gaze points (black and white circles) illustrate looks to the mouth and
to the box because the point of gaze falls within the AOI rectangles. To the right of the mouth
AOI, error bars of varying degrees show how confidence in scoring a look to an AOI decreases
when eye tracking accuracy is worse. B) Using a gaze cursor to score looks to AOIs. Instead
of drawing regions in the video frame, a coder manually identifies moments when the gaze
cursor overlaps with a specified area, such as the face or the box. By defining looks based on
the point of gaze plus a circular “error region”, researchers can choose to code looking more
liberally based on the error of the system. The dotted, outer circle indicates a 4o error radius
and the solid, inner circle indicates a 2o radius. In this example, a look to the face would be
scored using the 4o definition but not the 2o definition.

29


	Introduction
	What is head-mounted eye tracking?
	Why use head-mounted eye tracking?
	“In-the-moment” precision in space and time
	Ecological validity

	Two case studies of using head-mounted eye tracking in developmental science
	Visual object learning and word learning
	Joint attention in parent-child social interaction

	Challenges and solutions for studying real-world eye gaze
	Is head-mounted eye tracking an accurate and precise way to measure eye gaze?
	Accuracy
	Precision

	Is head-mounted eye tracking easy to apply?
	Defining fixations and saccades
	Signal processing and analysis

	Is head-mounted eye tracking cost effective?
	Summary of recommendations


